x^2/1-x=10^-8

Simple and best practice solution for x^2/1-x=10^-8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2/1-x=10^-8 equation:



x^2/1-x=10^-8
We move all terms to the left:
x^2/1-x-(10^-8)=0
We add all the numbers together, and all the variables
x^2/1-1x-8-1.0E=0
We multiply all the terms by the denominator
x^2-1x*1-8*1-(1.0E)*1=0
We add all the numbers together, and all the variables
x^2-1x*1-8*1-(2.718281828459)*1=0
We add all the numbers together, and all the variables
x^2-1x*1-10.718281828459=0
Wy multiply elements
x^2-1x-10.718281828459=0
a = 1; b = -1; c = -10.718281828459;
Δ = b2-4ac
Δ = -12-4·1·(-10.718281828459)
Δ = 43.873127313836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{43.873127313836}}{2*1}=\frac{1-\sqrt{43.873127313836}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{43.873127313836}}{2*1}=\frac{1+\sqrt{43.873127313836}}{2} $

See similar equations:

| 122-x=293 | | 1^3(9-2x)=x+1 | | 36=9n+3 | | 10-4x=x+5 | | -2m+5(m+3)=-2(m-3) | | 3^x*4^(x+1)=48 | | 26=w/2+11 | | (w-4/9)(-2.3)=-4/5 | | -72-12c=24-4c | | -7x+10=11x+2 | | 12=w/18 | | N+10=-n | | -1/5x-8=4x+3 | | 20z=300 | | 7=j/4 | | m+50=62 | | 4(8-4r)=-4(2r+10) | | 6(4x-10)=-156 | | 35x+120x-37x=560 | | 2+6n+2=10 | | 4(8-4r)=-4(2r+10 | | -6(x+4)-2=10 | | 13-6p=9+2p | | -2x-27=2x+1 | | w/8=2 | | 5x-30=55 | | 8-d=d | | 6x+7-4x=-9 | | 8x-18=42 | | 19=m-12 | | -79=5x+6 | | 224=14w |

Equations solver categories